

west virginia department of environmental protection

Office of Oil and Gas 601 57th Street SE Charleston, WV 25304 (304) 926-0450 (304) 926-0452 fax Earl Ray Tomblin, Governor Randy C. Huffman, Cabinet Secretary www.dep.wv.gov

PERMIT MODIFICATION APPROVAL

August 14, 2013

NOBLE ENERGY, INC. 333 TECHNOLOGY DRIVE, SUITE 110 CANONSBURG, PA 15317

Re: Permit Modification Approval for API Number 9502109 , Well #: SHR 1 AHS modified casing & extended lateral

Oil and Gas Operator:

The Office of Oil and Gas has reviewed the attached permit modification for the above referenced permit. The attached modification has been approved and well work may begin. Please be reminded that the oil and gas inspector is to be notified twenty-four (24) hours before permitted well work is commenced.

Please call James Martin at 304-926-0499, extension 1654 if you have any questions.

Sincerely,

Gene Smith

Regulatory/Compliance Manager

Office of Oil and Gas

July 25, 2013

West Virginia Department of Environmental Protection Office of Oil and Gas 1478 Claylick Road Ripley, WV 25271

Re: Casing Modification for the SHR 1 Wells

Dear Laura,

Enclosed please find casing modifications for the Shirley (SHR) 1 wells. The driller would like to extend the conductor string to 120' from 40' and shorten the Intermediate casing setting it at 2500' or 100' below the Big Injun they were asking to set it at 3627', I believe they are realizing the issues with the red rock in the area and are trying to plan ahead to avoid some of the drilling issues.

We would also like to extend the lateral legs on the 47-095-02109, 47-095-02110 and 47-095-02114. I have enclosed new casing program for those along with new plat and mineral exhibits.

If you have any questions, or need any additional information, please do not hesitate to get in touch with me office 724-820-3061 cell 412-310-8967 or email me at dswiger@nobleenergyinc.com.

Sincerely

Dee Swiger,

Regulatory Analyst

Enclosures:

/DS

Received

Office of Oil and Gas
Office of Oil and Gas
Protection
WV Dept. of Environmental

08/16/2013

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION, OFFICE OF OIL AND GAS W.VA. CODE §22-6A - WELL WORK PERMIT APPLICATION

			AP. 95	5-02109
1) Well Operator: Noble Energy, Inc.	494501907	Tyler	Centerville	Shirley
	Operator ID	County	District	Quadrangle
) Operator's Well Number: SHR 1 AHS	·	Well Pad Nar	ne: SHR 1	
·	,			
Elevation, current ground: 1013.30	Elevation, proposed	post-constru	ction:	994.5
Other Oil				
(b) If Gas: Shallow Horizontal	Deep		-	
) Existing Pad? Yes or No: No				
) Proposed Target Formation(s), Depth(s). A	anticipated Thicknesses a	nd Associated	l Pressure(s):	
Target - Marcellus, Depth - 6570', Thickness - 61', Press				

) Proposed Total Vertical Depth: 6621				
) Formation at Total Vertical Depth: Man	cellus			
) Proposed Total Measured Depth: 162	09'			
0) Approximate Fresh Water Strata Depths:	321, 351, 599			
l) Method to Determine Fresh Water Depth	: Offset well data - Senec	a Technology da	ta base	
2) Approximate Saltwater Depths: 1501	•			
	Coal			
4) Approximate Depth to Possible Void (coa		None		
5) Does land contain coal seams tributary or				
	•			
On Describe proposed Well Work. Drill the Drill Horizontal leg - stimulate and produce the Marcellu.	vertical depth to the Marcellus at ar	estimated total ve	rtical depth of appre	oximately 6 621 feet.
**If we should encounter an unanticipated void we will insta		the void but not m	ore than 50' halow t	the word set a basket
and grout to surface.	areasing area infinition of 20 delow	the void bot not no	Cre triali 50 below i	ne void, set a basket
7) Describe fracturing/stimulating methods if The stimulation will be multiple stages divided over the lateral leng		nt upon engineering	design. Slickwater fra	acturing technique will
be utilized on each stage using sand, water, and chemicals.				
8) Total area to be disturbed, including road	s, stockpile area, pits, etc,	(acres):	14.36 acre	eived
9) Area to be disturbed for well pad only, les	ss access road (acres):	3.89 acre	es	dive
•			~C	O *
			00	2013
			1.	13 °
				116 , 36 6
			k	Office of Off Brid Gr
				ACO OF THOMPS
				On the
			اه.	Debr.
			W.	08/16/201

APi

47-95-02109

20) <u>CASING AND TUBING PROGRAM</u>

SHRI AHS

ТҮРЕ	Size	<u>New</u> <u>or</u>	Grade	Weight per ft.	FOOTAGE: For Drilling	INTERVALS: Left in Well	CEMENT: Fill -up (Cu. Ft.)
		<u>Used</u>					
Conductor	20"	Ν	LS	94	120'	120'	CTS
Fresh Water	13 3/8"	N	J55	54.5	699'	699'	CTS / 15.6 ppg Yield 1.18
Coal							
Intermediate	9 5/8"	N	J55	36.0	2500" or 100" below Big Inquin	2500' or 100' below Big Injuin	CTS / 15.6 ppg Yield 1.19
Production	5 1/2"	N	P110	20.0	16.2091	16.2091	TOC 200' above 9.625 shoe
Tubing							
Liners							

^{**}We would like to drill through all the freshwater zones into a more stable rock before setting casing. Once we set the casing string will be circulated with cement to the surface.

ТҮРЕ	Size	Wellbore Diameter	Wall Thickness	Burst Pressure	Cement Type	Cement Yield
Conductor	20"	26"	.25		Type 1	cts
Fresh Water	13 3/8"	17 1/2"	.380	2730	Type 1	1.18
Coal						
Intermediate	9 5/8"	12 3/8"	.352	3520	Class A	1.19
Production	5 1/2"	8 3/4" & 8 1/2"	.361	12,640	Class A	1.27
Tubing						
Liners						

PACKERS

Kind:		
Sizes:		
Depths Set:		

7-18/16/2013

noble energy							DRILLING WELL PLAN SHRL-1A-HS Macellus Shale Horizontal Tyler County, WV					
						SHRL	-1A SH	L (Lat/Long)	(336008.76N, 1619639.13E) (NAD27)			
Ground Elevation 1013'				SHRL-1A LP (Lat/Long)				(335071.56N, 1618155.73E) (NAD27)				
Az	m	160°			SHRL-1A BHL (Lat/Long)			L (Lat/Long)	(326933.328N, 1621117.805E) (NAD27)			
WELLBORE	DIAGRAM	HOLE	CASING	CASING GEOLOGY		MD TVD		CEMENT	CENTRALIZERS	COMMENTS		
		26	20* 94#	Conductor	120	120	AIR	To Surface	Conductor Rig	rVa	Stabilize surface fill/soil Conductor casing = 0.25" w thickness	
x	×	17 1/2	13-3/8* 54.5# J-55 BTC				AIR	15.6 ppg Type 1 + 2% CeCl, 0.25# Lost Circ 20% Excess Yield = 1.18	Bow Spring on first 2 joints then every third joint to 100' form surface	Fill with KCI water once drilled to TD. Once casing is at setting depth, circulate a minimum of one hole volume prior to pumping cement.	Surface casing = 0.380* wa thickness Burst=2730 psi	
		12 3/8	9-5/8" 36# J-55 LTC	Surf. Casing	699	699		15 6ppg Class A +0.4% Ret, 0.15% Disp, 0.2% AntiFoam, 0.125#/ak Lost Circ 30% Excess Yield=1.19 To Surface	Bow spring centralizers every third joint to 100' feet from surface.		Intermediate casing = 0,352* wall thickness Burst=3520 psi	
X	X			Price	2212	2212						
					-		AIR					
					-		AIR					
×				Int. Casing	2500	2500	-					
	No.		ai	Berea	2567	2567			Rigid Bow Spring every third joint from KOP to TOC		Production casing = 0.361	
lî				Venango	2755	2755	8 Oppg -					
		8.75" Vertical		Gordon Top	2996	2996	9.0ppg SOBM					
				Lower Huron		3873	44500					
			5-1/2*					+2.6% Cement extender, 0,7% Fluid Loss additive, 0.45% high temp retarder, 0.2%		Once at TD, circulate at max allowable pump rate		
×	X		20#	Benson		5048	12.0ppg-	friction reducer		for at least 6x bottoms up. Once on bottom with	wall thickness Burst=12640 psi	
		8.75" Curve	HCP-110 TXP BTC	Alexander		5296	12.5ppg SOBM	15% Excess		casing, circulate a minimum	Note:Actual centralizer schedules may be changed	
					Tully Limestone Hamilton	-	6547 6551	1	Yield=1.27	Rigid Bow Spring every	of one hole volume prior to pumping cement.	due to hole conditions
				Marcellus	-	6570			joint to KOP			
		8.75* - 8.5*		Cherry Valley		6612						
				TD TD	16209	6621	12.0ppg- 12.5ppg					
X X	Lateral		Onondaga	10200	6631	SOBM						
	×	X telephonesis	A Control of the	Onondaga A. Z. Mariana	X	0031	X	5010000000000 X 100000000000	And the least of t	THE RESERVE AND THE		
					Hole - Cemented Long String 20# HCP-110 TXP BTC				+/-8661 ft Lateral TD @ +/-6621 TVD +/-16209 MD			

