

west virginia department of environmental protection

Office of Oil and Gas 601 57th Street SE Charleston, WV 25304 (304) 926-0450 (304) 926-0452 fax Earl Ray Tomblin, Governor
Randy C. Huffman, Cabinet Secretary
www.dep.wv.gov

PERMIT MODIFICATION APPROVAL

January 09, 2014

XTO ENERGY, INC. 810 HOUSTON STREET FORT WORTH, TX 76102

Re: Permit Modification Approval for API Number 3305707 , Well #: ANDERSON UNIT A 1H Corrected mine depth

Oil and Gas Operator:

The Office of Oil and Gas has reviewed the attached permit modification for the above referenced permit. The attached modification has been approved and well work may begin. Please be reminded that the oil and gas inspector is to be notified twenty-four (24) hours before permitted well work is commenced.

Please call James Martin at 304-926-0499, extension 1654 if you have any questions.

Sincerely,

Gene Smith

Regulatory/Compliance Manager

Office of Oil and Gas

WV DEP Office of Oil & Gas Attn: Permitting 601 57th Street Charleston, WV 25304

June 17, 2013

RE: Anderson Unit A 1H - Modification

To Whom It May Concern:

Enclosed is a revised WW-6B and revised plat for our Anderson Unit A 1H well, API 47-033-05707. The plat reflects a move of 10 feet for the surface hole. The WW-6B shows changes to the casing program and corrected information regarding the abandoned Williams coal mine depth. There was previously a misunderstanding regarding elevation vs. depth of the mine at this location.

Sincerely,

Tim Sands

Regulatory Compliance Technician

XTO Energy, Inc.

PO Box 1008

Jane Lew, WV 26378

Tim Sands@xtoenergy.com

304-884-6036

Received

AUG - 2

WV Dept. of Environmental Protection

WW - 6B (3/13)

STATE OF WEST VIRGINIA DEPARTMENT OF ENVIRONMENTAL PROTECTION, OFFICE OF OIL AND GAS WELL WORK PERMIT APPLICATION

1) Well Operator:	XTO En	ergy, Inc.	494487940	Harrison	Eagle	Shinnston
			Operator ID	County	District	Quadrangle
2) Operator's Well N	Number: A	nderson Unit A 1H	W	ell Pad Nam	e: Anderson U	nit A
3 Elevation, current	ground:	1,087' El	evation, proposed p	ost-construct	ion:	1,084'
4) Well Type: (a) G	as	Oil	Underground	Storage		_
	Other					
(b) If		The same of the sa	Deep			
5) Eviating Rada Va		zontal			·	SDE
5) Existing Pad? Yes					_	5120B
6) Proposed Target I	100 0000	-0.000			Pressure(s):	(D. (20)
Target Formation: Marc	cellus, Depth 7055'	, Anticipated Thickness: 1	50', Associated pressure	: 4,650 psi		
7) Proposed Total V	ertical Depth:	7,190'				
8) Formation at Total	ıl Vertical Der	oth: Marcellus			F)	Meco:
9) Proposed Total M	leasured Deptl	1: 14,000'				CIVE
10) Approximate Fro	esh Water Stra	ita Depths: 3	1' & 131'			AUG 2
11) Method to Deter	mine Fresh W	ater Depth:	Offsetting Reports		W Dept Office	2005
12) Approximate Sa	ltwater Depths	616'				or Oil and Gas
13) Approximate Co	al Seam Dept	hs: 149', 245'				"al Protection
14) Approximate De	pth to Possibl	e Void (coal mine,	karst, other):	Possible V	Villiams Coal Mir	ne - 149'
15) Does proposed v		ontain coal seams o so, indicate name a		r No		
16) Describe propos	ed well work:	Drill a new horizont	al Marcellus well, utilizing s	ynthetic mud and a	closed loop system	m for both drilling and
completion. Install new	casing with centra	lizers.				
17) Describe fractur			ellbore. 1500 gals 15% HCl acid. 2. S	and / Proppant Stages - Se	everal stages of pumping v	vater combined with sand at a
targeted 80 bpm rate. The sand size	may vary from 100 mesh to30	0/50 mesh size. 12,500 bbls slick water	with 220,000 lbs 40/70, 270,000 lbs 100 l	mesh sands and 2,200 gals i	FR 133, 1,500 gals Bioplex	301 and 1,500 gals Bioplex 301
and 1,190 gals antiscale 30. 3. Flush S	tage - Slickwater water stage to fi	ll the wellbore to flush the sand from the wel	bore. Depending on the water quality, a bioci	de, friction reducer, iron control	and scale inhibitor may be inj	ected during the completion as well.
18) Total area to be	disturbed incl	uding roads, stocks	vile area nita ata (acres):	6.78 +/-	
	T 10 10 10 10 10 10 10 10 10 10 10 10 10				0.76 +7-	
19) Area to be distur	bed for well p	ad only, less acces	s road (acres):	5.26 +/-		Page 1 of 3

01/10/2014

WW - 6B (3/13)

20)

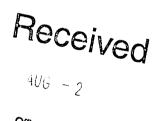
CASING AND TUBING PROGRAM

ТҮРЕ	Size	New or Used	Grade	Weight per ft.	FOOTAGE: For Drilling	INTERVALS: Left in Well	CEMENT: Fill -up (Cu. Ft.)
Conductor	24"	New	Class B	94#	40'	40'	40 cuft - C.T.S.
Fresh Water	13 3/8"	New	MS-50	48#	300'	300'	270 cuft - C.T.S.
Coal							
Intermediate	9 5/8"	New	J-55	36#	2625'	2625'	Lead 980'/Tail 210' - C.T.S.
Production	5 1/2"	New	CYP-110	17#	14000'	14000'	3000 cuft
Tubing							
Liners							

JDW 7/31/2013

ТҮРЕ	Size	Wellbore Diameter	Wall Thickness	Burst Pressure	Cement Type	Cement Yield				
Conductor	24"	28"	0.375"	n/a	Concrete	1.19				
Fresh Water	13 3/8"	17.5"	0.33"	2,160	Type 1	1.19				
Coal										
Intermediate	9 5/8"	12.25"	0.352"	3,520	Type 1	Lead 1.26/Tail 1.19				
Production	5 1/2"	8.75" 8.5"/7.875"	0.304"	10,640	Type 1	1.32				
Tubing	Tubing Roos:									
Liners						Receive	ed.			
			PACK	ERS		AUG - 2 2013				

	 IACKEN	<u>us</u>		
Kind:			WV Dept of Oil and Co	
Sizes:			Office of Oil and Ga WV Dept. ef Environmental F	s Protection
Depths Set:				


Page **2** of **3**

01/10/2014

ww	-	61
(3/13)	١	

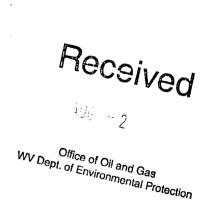
21) Describe centralizer placement for each casing string.
Conductor: none
Fresh Water: 1"-6" above float shoe, 1 at float collar, & 1 at every 4th joint to surface
Intermediate: 1"-6" above float shoe, 1 at float collar, & 1 at every 4th joint to surface
Production: 1 at every 4th joint from the kickoff point to 1000' above the kickoff point
22) Describe all cement additives associated with each cement type.
Conductor - Concrete - no additives
Fresh Water - Tail - Type 1 - 2% Calcium Chloride, Super Flake
Intermediate - Lead - Type 1 - 2% Calcium Chloride, Super Flake
Tail - Type 1 - 2% Calcium Chloride, Super Flake
Production - Tail 50/50 POZ - Type 1 - Sodium Chloride, Bentonite, Super Flake, Air-Out, R-1, AG-350
23) Proposed borehole conditioning procedures.
See attached sheet

*Note: Attach additional sheets as needed.

Office of Oil and Gas WV Dept. of Environmental Protection

Page 3 of 3

01/10/2014


Anderson Unit A 1H - Void Encounter

We will set conductor at a minimum 40' from ground level to nipple up an annular diverter, with a 3" gate valve installed on the conductor pipe that would be used to divert flow.

We will set 13 3/8" casing around 300' if we do not encounter the mine.

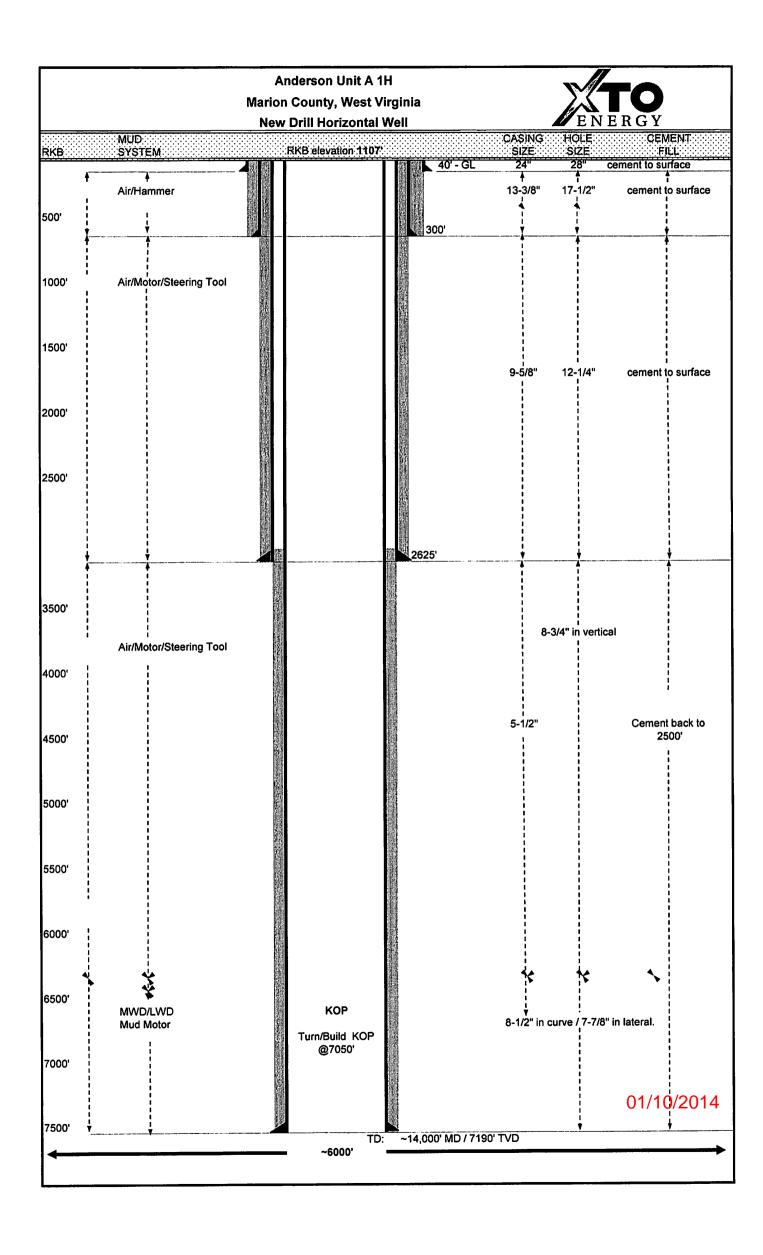
If we do encounter the mine we will set 18"-50' deeper than the void or in good solid rock (whichever is first). A cement basket will be run on the backside of the 18" casing and cement will be pumped down the inside of the pipe up to the void. A top out job on the annulus will be done from surface to the top of the void (cement basket).

After waiting on cement we'll continue forward with our planned design which is to set a string of 13 3/8 surface casing at 300' TVD.

					Cacina	Design/Program						Cementing Program		i Ve
Туре	Hole Size	Size	Length	Top/Bottom of String	Grade	Weight (ppf)	Wall	Burst Pressure Rating	Centralizer Placement	Туре	Yield (cu. ft/sk)	Additives	Estimated Volume (cu. ft.)	SCO
Conductor	28"	24"	40'	0' / 40'	Class B	94	0.375	n/a	none	concrete	1.19	none	40	\mathcal{L}
Coal	22"	18"	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD	TBD L	4
Surface / Fresh Water	17.5"	13-3/8"	300'	0' / 300'	MS-50	48	0.33"	2160	1-6" above float shoe 1-at float collar 1-every 4th jt to surface	Tail -Type 1	1.19	Calcium chloride, Super Flake	270	İ
Intermediate	12.25"	9-5/8"	2625	0' / 2625'	J-55	36	0.352"	3520	1-6" above float shoe 1-at float collar	Lead-Type 1	1.26	Calcium Chloride, Super Flake	980	ı
memediale	12.23	<i>3-310</i>	2023	0 / 2020	0-00	33	0.002		1-every 4th it to surface	Tail -Type 1	1.19	Calcium chloride, Super Flake	210	ı
Production	8.75" 8.5"/7.875"	5-1/2"	14,000	0' / 14000'	CYP-110	17	0.304	10640	Every 4th joint from 1000' above KOP to KOP	Tail-50/50 POZ:Type 1	1.32	Sodium chloride, bentonite, Super Flake, Air-Out, R-1, AG- 350	3000	ı
Tubing														ł
Liners	1 1													ı

	Anderson Unit A 1H Proposed Directional Data											
		Drilling		Condition Procedures								
Hole Section	Hole Size	Fluid	Drilling	At TD	Running Casing	Prior to Cementing						
Conductor	28	Air∕Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping cement						
Coal	22*	Air/Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping cement						
Fresh Water	17.5	Air/Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping cement						
Intermediate	12.25	Air/Water	Hole will be circulated with high pressure air	Hole will be blown clean with air prior to pulling out of hole to run casing	Hole will be filled with fluid and circulated to surface if conditions require	Casing will be filled with fluid and returns taken at surface prior to pumping cement						
Production	8.75 8.5"/7.875"	Air / Non- aqueous based mud	cuttings out of the hole, MW will be approximately 11.5ppg-14.0ppg for stability and overbalance. As required, the hole will be circulated at high pump	The hole will be circulated at maximum possible pump rate and the drill string will be rotated at the maximum rpm.	Hole will be circulated as necessary while running casing.	Hole will be circulated at least one bottoms up prior to pumping cernent.						
Tubing												
Liners												

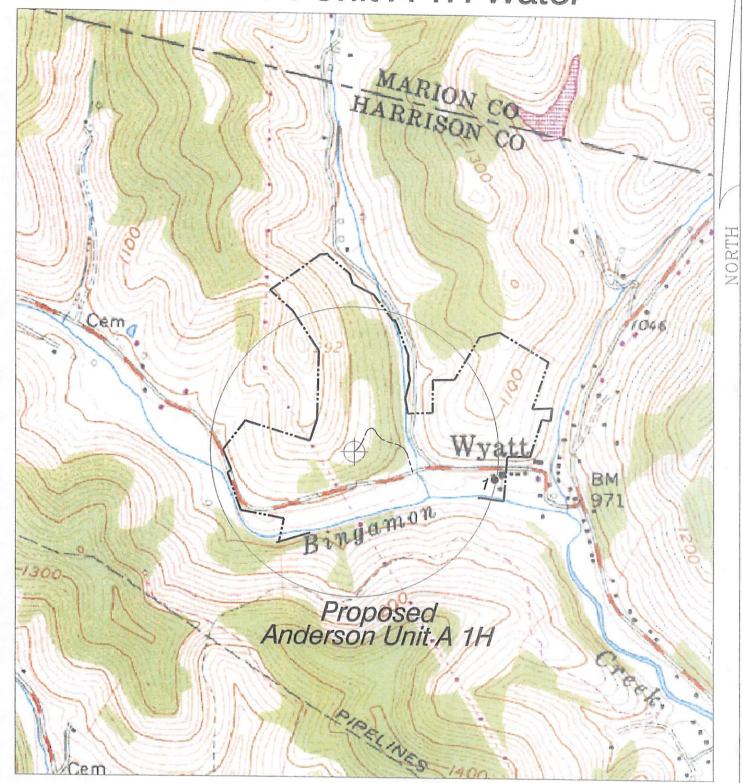
Anderson Unit A 1H Proposed Directional Data


	Measured Depth	Inclination Angle	Azimuth Direction	
Proposed Angle/Direction of Well		90	158	Lateral
Angle and Direction of Non-vertical wellbore until target		10	192	Curve/Throw
Approx. Depth at which well deviates from vertical				
	1000	5	225	Nudge

Other directional data

KOP 3000 LP 8000 TD 13500

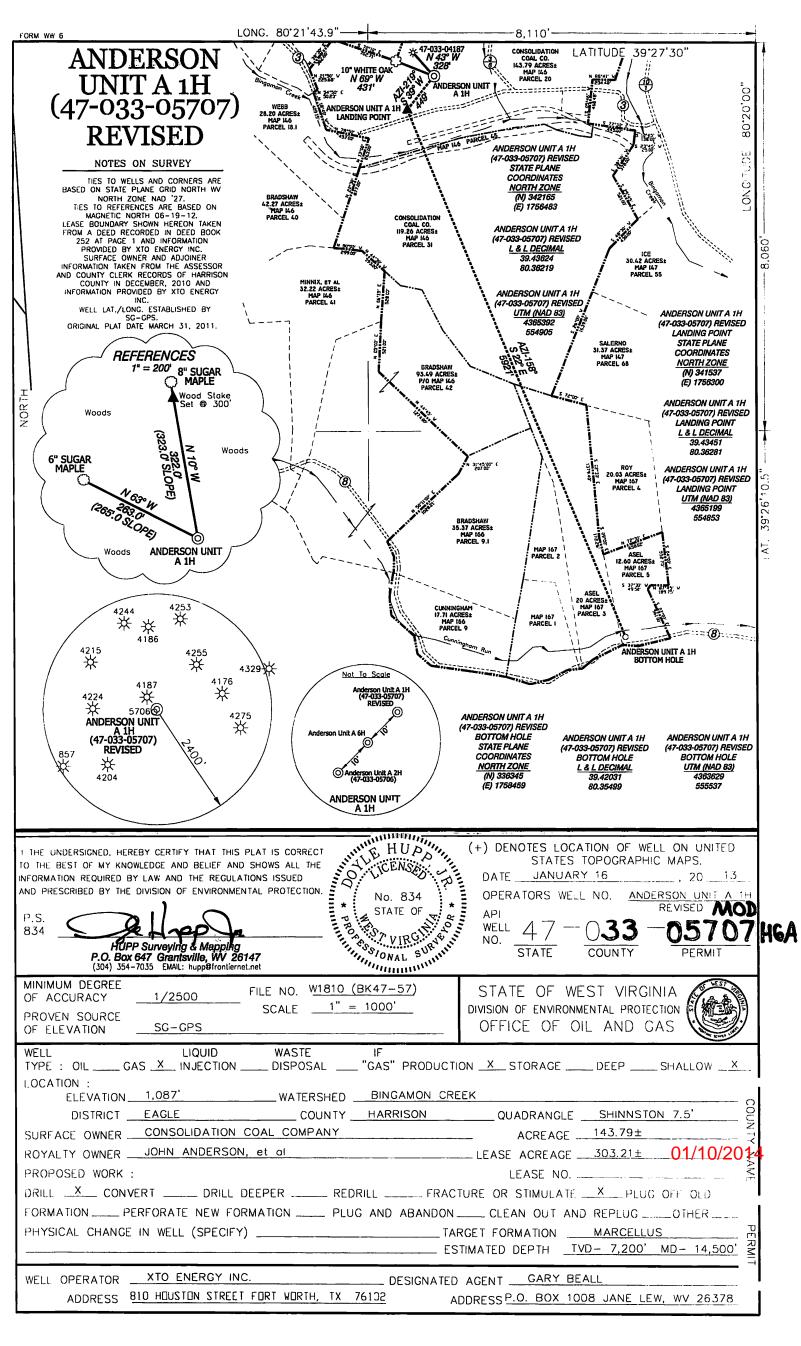
approx. TD 14000 (rounded up)


Office of Oij and Gas Environmental Protection

Form W-9

XTO ENERGY INC. Anderson Unit A 1H Water

Page 1 of 1


HUPP Surveying & Mapping

P.O. BOX 647 GRANTSVILLE, WV 26147 PH: (304)354-7035 E-MAIL: hupp@frontiernet.net 1" = 1000' Shinnston Quad XTO Energy Inc. 810 HOUSTON STREET Fort Worth, TX 76102

01/10/2014

OCT 19 2012

Fryirosmantal Protection

