

API # 47- 39-05229

State of West Virginia
Division of Environmental Protection
Section of Oil and Gas

Well Operator's Report of Well Work

Farm name: Amherst Ind. Operator Well No.: 823420 LOCATION: Elevation: 874.00 Quadrangle: QUICK MALDEN County: KANAWHA
12100 Feet South of 38 Deg. 20Min. 0 Sec.
10350 Feet West of 81 Deg. 27 Min. 30 Sec. District: Latitude: Longitude Company: COLUMBIA NATURAL RESOURCE P. O. BOX 6070 Casing | Used in Left Cement CHARLESTON, WV 25362-0000 & |Fill Up| Tubing | Drilling | in Well | Cu. Ft. Agent: W. A. WATSON, JR. Size Inspector: CARLOS HIVELY 05/04/98 Permit Issued: 416 416 11 3/4__ Well work Commenced: 6/20/98 Well work Completed: 8/27/98 Verbal Plugging 342 1248 8 5/8 1248 Permission granted on: Rotary X Cable Rig
Total Depth (feet) 4910
Fresh water depths (ft) 4896 Salt water depths (ft) 875 Is coal being mined in area (Y/N)? y Coal Depths (ft):__ NOV 2 OPEN FLOW DATA hale Pay zone depth (ft) 3606-4398 MCF/d Oil: Initial open flow Bbl/d Producing formation <u>Devonian Shale</u> Gas: Initial open flow - Final open flow 462 462 Final open flow 462 MCF/d Final open flow Time of open flow between initial and final tests 72 Hours ___psig (surface pressure) after Static rock Pressure 825 Second producing formation Injun/Big Lime Pay zone depth (ft) 1428-1520'

Gas: Initial open flow 481 (nat)MCF/d Oil: Initial open flow Bbl/d

Final open flow MCF/d Final open flow Bbl/d

Time of open flow between initial and final tests Time of open flow between initial and final tests

NOTE: ON BACK OF THIS FORM PUT THE FOLLOWING: 1). DETAILS OF PERFORATED INTERVALS, FRACTURING OR STIMULATING, PHYSICAL CHANGE, ETC. 2). THE WELL LOG WHICH IS A SYSTEMATIC DETAILED GEOLOGICAL RECORD OF ALL FORMATIONS, INCLUDING COAL ENCOUNTERED BY THE WELLBORE.

Static rock Pressure 110 psig (surface pressure) after *Producing 066 the 5 1/2"X8 5/8" Annulos-Natural

							سقب -
For:	COLUMB	BIA	NATURAL	RESOURCES,	INC.	rete .	-
			1/20				ı
	Bv:	/	ar los	le.		,	Ü
	D2+0.	حي-ح	1/2/1/	3.0/	· · · · · · · · · · · · · · · · · · ·		8
	Date:_		11/18/2	<i>Y</i>			X
							_

Well Completion Data

CNR Well #: 823420

Permit#:

47-39-05229

County:

Kanawha

<u>District:</u>

Malden

Prospect:

Quick

<u>Field:</u>

Indian Creek Oriskany

	Top		Base				Тор		Base	71 . Y
<u>Salt Sand</u>	740	-	965		Olentangey Sh	ale	3820	-	4295	
<u>Maxon Sand</u>	1030	•	1130		Rhinestreet Sh	ale	4295	-	4580	
<u>Little Lime</u>	1205	•	1245		<u>Fifth Sa</u>	ind		•		in father
Greenbrier Limestone	1265	, -	1435		Elizabeth Sa	nd				
<u>McCrady</u>	1435	-	1445		Bradford Sa	ınd		-		
<u>Big Injun</u>	1445	- 1	1475		<u>Rîley Sa</u>	ind		-		
Pocono Shale	1475	-	1885		Benson Sa	ınd		-		
<u>Berea Sand</u>	1885	-	1889		Onondaga Limesto	one	4740	-	4820	
Cleveland Shale		-			Oriskany S	and	4846	-	4856	
<u>Upper Devonian</u>	1890	-	3610		Newburg S	and		-		
Lower Huron Shale	3610	-	3820		McKenzie Dolon	ıite		-		
					Tuscarora Sa	and		-		

Formation @ TD Oriskany

	Depth	Mcf
Show Gas 1	1310	350
Show Gas 2	1430	350
Show Gas 3		
Show Gas 4		
Show Gas 5	1	

	Depth	
Show Oil 1		
Show Oil 2		

	Depth
Show Water	4315

		Н	POR	Sw	Perf Interval
Pay 1	Greenbrier Ls.				1310-1312
					1342-1344
					1426-1432
Pay 2	Keener Sd.	10	0.23	0.25	1432-1442
Pay 3	Big Injun Sd.	16	0.16	0.3	1462-1472
Pay 4	Oriskany Sd.	8	0.15	0.23	4834-4844
Pay 5					
Pay 6	,				

NOV 2 5 1998

Logger TD 4918

Logging Suite: GR, LDT, CNL, DI, T, A TD to intermediate casing point, GR to surface. Memory PL as needed.

Logging Date: 6/30/98

PERFO	RATIONS:				
Stage I,	Perforations:	32 holes from	4,837	_to4,845	*
Stage 2,	Perforations:	20 holes from	4,308	_to4,398	-
Stage 3,	Perforations:	16 holes from	3,606	_to4,137	na real and a second a second and a second a
Stage 4,	Perforations:	holes from		_to	
			• 100 1		
FRACTU	JRING:				
	1 ST S	TAGE: ORISK	ANY *		
	Perforations from _4,	H ₂ 0 <u>46</u> B Scf. I.S.I.P. <u>2</u> WET, SET CIBP STAGE: <u>DEVON</u> 308 - <u>4,398</u> ,	bl., Total s 11 PSI @ 4,420' ITAN SHALI Acid _50	sand 15 min 15 min TO ABANDON E 0 gal15%	VAC. ORISKANY HCL,
	Breakdown @ $3,462$ ATP $_3,446$ PSI, Tota Total N ₂ $_908,700$	IH ₂ 0 <u>160</u> B	bl., Total s	sand 51,000) #
	3RD	STAGE: DEVON	TAN SHAL	E	
	Perforations from 360 Breakdown @ 2,702 ATP 2,384PSI, Tota Total N ₂ 751,400	2 PSI, Avg. Ra I H₂0 _ <i>137</i> BI	te <u>42</u> ol., Total s	BPM, (F sand 41,830	OAM) #
	4TH	STAGE:			
	Perforations from Breakdown @ ATP PSI, Total	, PSI, Avg. Ra H ₂ 0 BI	Acid te ol., Total s	gal BPM, sand	_ HCL, #

KAN BARS