STRATIGRAPHY AND DEPOSITIONAL ENVIRONMENTS OF THE UPPER DEVONIAN SPEECHLEY-BALLTOWN INTERVAI IN NORTH CENTRAL WEST VIRGINIA
 Submitted to the Graduate School of
 West Virginia University In Partial Fulfillment of the Requirements for The Degree of Master of Science

by
Catherine A. Horsey, B.S.
Morgantown
West Virginia
1978

Abstract

The Speechley-Balltown interval represents 600 to 1000 Eeet of the upper part of the Upper Devonian Chemung Group in northcentral West Virginia. Within the study area of this paper (Harrison, Lewis, Barbour and Upshur Counties) this interval consists primarily of siltstone and shale, with irregular occurrences of fine-grained sandstone. Information derived from more than one thousand geophysical logs, one unoriented core, gas production records and regional evidence indicates a relatively shallow marine origin for these sediments. East-west oriented sand trends coalescing in the west to form a fan-like bociy suggest a submarine channel-fan complex as the depositional eavironment, which interpretation is supported by geophysical log sisnatures, and sedimentary structures observed in the core. Sand deposition occurred on a gentle slope, such as a prodelta. interrupting "normal" sedimentation of fine silt and mud.

Increased thickness of the stratigraphic interval in a part of the study area possibly underlain by the eastern flank of the Rome Trough suggests continued basement activity during Iate Devonian.

Gas production within this interval is stratigraphically controlled and occurs within both channel and fan sands. The Speechley A sand is recommended as the best gas prospect because of maximum areal extent and aggregate sand thickness.

TABLE OF CONTENTS

ABSTRACT ii
LIST OE FIGURES iv
ACKNOWLEDGEMENTS v
INTRODUCTION 1
Area of Investigation 1
Objectives of Study 4
Previous Work 4
Methods of Investigation 5
Use of ganma ray logs 6
STRATIGRAPHY 8
Balltown Interval 13
Speechley Interval 23
Upper Speechley Interval 29
Comparison of Sands 33
Regional Stratigraphic Changes 33
STRUCTURE 34
Effects of Structure on Stratigraphy 36
GAS PRODUCTION 38
DEPOSITIONAL ENVIRONMENT 41
CONCLUSIO*S 44
REFERENCES 45
VITA 48
APPROVAL PAGE 49
Page

1. Location of study area in north-central west Virginia 2
2. Generalized stratigraphic column, Middle to Upper Devonian, showing major gas producers in north-central west Virginia. 3
3. Sample gamma ray log (Har-862) of study interval, showing sands and marker shales 9
4. Transverse (north-south) cross-section $A-A$ ' across study area 10
5. Longitudinal (east-west) cross-section $B-B^{\prime}$ across stuäy area. 11
6. Transverse (north-south) cross-section $C-C$: across study area. 12
7. Isopach map of Balltown interval 14
8. Isolith map of Balltown C sand 15
9. Extent of Balltown B_{1} sand 16
10. Isolith map of Balltown B sand 18
11. Description of core of Har-862, from depths 3410-3422' 19
12. Isolith map of Balltown A sand 22
13. Isopach map of Speechley interval 24
14. Extent of Speechley B and C sands. 25
15. Isolith map of Speechley A sand 26
16. Distribution of \log signatures of Speechley A sand 28
17. Isopach map of Upper Speechley interval 30
18. Isolith map of Upper Speechley sand 32
19. Structural contour map on top of Warren shale 35
20. Pay zone map of Speechley A sand 40
21. The Speechley-Balltown is a sequence of predominantly finegrained rocks with irregular occurrences of fine-grained sand packages up to thirty feet thick. The interval thickens to the west at a rate of approximately twelve feet per mile in the study area.
22. The Warren shale and Upper Speechley shale are the most consistent and therefore most useful gamma ray log marker beds for this interval. In general, radioactive shales are better marker beds than sands within this interval.
23. Probable depositional environment was the prodelta, where deposition of fine-grained sediments was periodically interrupted by density currents carrying sandier material down a gentle slope in neritic sea depth. Density currents were confined in the east to narrow channels of low sinuosity, coalescing westward into a submarine fan. Maximum sand deposition occurred during Speechley time.
24. Thickness reversals between the lower and upper Chemung stratigraphic sections indicate westward migration of depositional axes with growth of the Catskill delta complex.
25. Only one core was available for this study; additional cores are needed to document lateral as well as vertical variations of sands in this interval, and to confirm the working hypothesis of turbidite origin.
26. Production within the Speechley-Balltown interval is stratigraphically controlled; channel and fan sands act as trap for hydrocarbons probably generated within associated organicrich shales.
27. Best drilling target is the Speechley A sand both because of areal extent and production record. Low sinuosity and greater sand content of channel trends in the east increase success probability once trends are encountered. Probability of similar untested trends to the north and south should not be overlooked.
28. Future work on the Chemung should include study of the Bradford and Riley, and possibly Warren, sands, especially where cores are available, to better document facies and depositional enviroments of the Upper Devonian.
29. Coincidence of Upper Devonian depositional patterns and magnetic anomalies invites detailed study of Paleozoic sedimentation trends in this area to determine the nature and extent of basement influence.
