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ABSTRACT

The subsurface geometry and growth history of the
Warfield structure were studied based on seismic and well data
in south-central West Virginia. Using computer software
packages of the MCS (Mapping-Contouring System), the
SURFACEIII (Surface Contouring System) and the DEAM (Data
Editing and Management System), structure and isopach maps of
the Upper Paleozoic System were completed by retrieving,
editing and contouring over six thousand shallow wells from
the database of the DEAM system. Seismié data were
quantitatively processed and analyzed in order to provide
constraints on the deeply-buried structures in the Lower
Paleozoic System.

The shallow Warfield structure above +the Devonian
Onondaga Limestone largely consists of the Warfield anticline
and the Lovely monocline: the crestal trace of the anticline
is horizontal at this 1level with a generally northeast-
trending closure and a northwest-dipping axial plane; the
Lovely monocline is on the southeastern limb of the Warfield
anticline forming a steeper-dipping segment of that limb. At
the intermediate level between the Devonian Onondaga Limestone
and the Ordovician Trenton Limestone, the closure of the
anticline is lost as the fold plunges northeastward. At the
deep level below the Ordovician Trenton horizon, however, the
Warfield anticline no longer exists, and it is replaced by an
asymmetric half-graben which is bounded by a basement fault

along the eastern margin of the Rome Trough called the Trough-
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Margin fault; the Trough-Margin fault is a deeply-buried
basement fault with a steep dip; the Warfield fault, which is
adjacent to the Trough-Margin fault and is associated with the
Lovely monocline, dips steeply to the north but extends to the
surface and had a small amount of post-Pennsylvanian, normal
displacement.

The Warfield structure had a complex growth history and
significantly influenced the sedimentation in south-central
West Virginia throughout the Paleozoic. From the Early
Cambrian to the Late Ordovician, the tectonic regime of the
Warfield structure area was characterized by extension and
differential sedimentation which were responsible for the
formation of the half-graben and the deposition of the thick
sequence of the Lower and Middle Cambrian System. From the
Late Ordovician to the Middle Devonian, the Warfield anticline
formed as a northeast-plunging fold at the intermediate level.
From the Middle Devonian to the Pennsylvanian, the crustal
stress caused a structural inversion and southeastward
shifting in thickening trend of sediments across the
horizontal Warfield anticline and the Lovely monocline at the
shallow level. Finally, during the post-Pennsylvanian period,
minor extension and normal dip-slip displacement occurred on
pre-existing faults.

The trend of the Warfield structure changes from east-
west at its southern bend, to northeast in the middle segment
aﬁd north-south at its northern bend. The southern bend is

linked to a east-west-trending regional fault system called
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the 38th Parallel lineament and the northern bend to a north-
south-trending fault system called the Burning-Mann lineament,
whereas the middle segment is parallel to a northeast-trending
magnetic gradient called the New York-Alabama lineament. The
geometry and growth history of the Warfield structure is
speculated to be influenced by the 38th Parallel and the
Burning-Mann lineaments, which define a Wedge-shaped Fault

System in the west-central Appalachian basin.
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CONCLUSIONS

The following conclusions are drawn from subsurface
studies of the Warfield structure:

1. The Warfield structure consists of several genetically
related structural elements including the Warfield anticline,
the Lovely monocline, the Warfield fault, the Trough-Margin
fault and several other folds, monoclines and faults at the
eastern margin of the Rome Trough. The Trough-Margin fault is
a deeply-buried basement structure with a high-angle dip
toward the northwest under the southeastern 1limb of the
Warfield anticline (Figs 7.3, 7.28 and 7.33). It formed and
was most active during the Early and Middle Cambrian. The
Warfield anticline, which is situated on the down-thrown side
of the Trough-Margin fault, is a basement-controlled shallow
structure above the Ordovician Trenton Limestone (APPENDIX I-1
through APPENDIX 1I-10). There developed several smaller
anticlines over the basement horst blocks at the southern and
northern ends of the Warfield anticline (Figs 7.8, 7.33, and
7.58). The configuration of the Warfield anticline changes
with depth (compare Figs 4.1 through 4.6 with Figs 5.1 through
5.4): the northeast-trending crestal trace of the fold is
horizontal at the Mississippian horizons (the Mississippian
Little Lime, Pencil Cave, Greenbrier Limestone, Big Injun
Sand, Coffee Shale and Berea Sandstone, etc.) with a
northeast-trending closure of about 300 feet and a northwest-
dipping axial plane; at the intermediate horizons (the

Devonian Onondaga Limestone and Oriskany Sandstone, the
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Silurian Newburg Sandstone and Tuscarora Sandstone), the
closure is lost as the fold plunges toward the northeast. The
Warfield fault is a steep north-dipping dip-slip fault
adjacent to the Trough-Margin fault, which shows the post-
Pennsylvanian normal displacement (Shumaker and Coolen, 1993).
The Lovely monocline, a shallow structure on the southeastern
limb of the Warfield anticline that is close and sub-parallel
to the Warfield fault and the Trough-Margin fault, is related

to the post-Onondaga reactivation of the Trough-Margin fault

with a small amount of reverse movement (Shumaker and Coolen,'

1993), and part of the movement is post-Pennsylvanian as the
monocline is also mapped on the surface coals (Shumaker,
personal communication).

2. The trend of the Warfield structure changes from east-
west in the southern bend area to northeast in the middle
segment and north-south in the northern bend area. The
southern and northern bends are linked to the 38th Parallel
and the Burning-Mann lineaments, respectively, and the middle
segment is parallel to the New York-Alabama lineament. The
geometry and growth history of the Warfield structure during
the Paleozoic were influenced by these three lineaments to
define a wedge-shaped structure in the central part of the
Appalachian basin.

3. On the basis of subsurface mapping and seismic
analysis, the Warfield structure is divided vertically into
the shallow, intermediate and deep structural levels according

to their changes in geometry and structural style. The shallow
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Warfield structure largely consists of the horizontal Warfield
anticline and the Lovely monocline above the Devonian Onondaga
Limestone (Figs 4.1 through 4.6). The intermediate Warfield
structure is chéracterized. by a gently northeast-plunging
Warfield anticline between the Devonian Onondaga Limestone and
the Ordovician Trenton Limestone (Figs 5.1 through 5.4). The
deep Warfield structure, below the Trenton Limestone, is an
asymmetric half-graben bounded by the Trough-Margin fault

(Figs 6.1 through 6.5).

4. The growth history of the Warfield structure can be

generalized in terms of 5 tectonic regimes: the Precambrian
regime was probably responsible for the formation of the 38th
Parallel, the Burning-Mann and the New York-Alabama lineaments
related to the Grenville orogeny; the Early Cambrian-Late
Ordovician regime, which was characterized by a regional
extension and differential subsidence probably in association
with the Iapetus rifting, was responsible for the formation of
the Warfield structure at the deep level; the Late Ordovician-
Middle Devonian regime, which might have resulted from the
Taconic orogeny, was responsible for the formation of the
northeast-plunging Warfield anticline at the intermediate
level; the Middle Devonian Onondaga-Pennsylvanian regime,
which might have been initiated by the Acadian orogeny and
probably terminated by the Alleghanian orogeny, was
responsible for the structural inversion and southeastward
shifting in the trend of increased rock thickness; finally,

the post-Pennsylvanian regime was characterized by extension
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and normal dip-slip displacement along preexisting faults (for
example the Warfield fault). The complex history and changes
in stress regime of the Warfield structure might be related to
alternating FORWARD and BACKWARD movement of a basement WEDGE-
BLOCK bounded by the 38th Parallel, the Burning-Mann and the
New York-Alabama lineaments in response to regional changes in
stress regime within the North America Plate.

5. The Warfield structure influenced the sedimentation in

south-central West Virginia throughout the Paleozoic. The

large offset of basement along the Trough-Margin fault during'

the Cambrian was responsible for the deposition of a thick
sequence of rift sediments that abruptly changes thickness
across the Trough-Margin fault (Figs 6.7 through 6.10, Figs
7.4, 7.29 and 7.34). This study also found a shift in the
trend of rock thickness from northwest to southeast after
deposition of the Onondaga Limestone (Figs 4.7 through 4.18,
Figs 4.25 through 4.27, Figs 7.4, 7.29 and 7.34) which is
attributable to the structural inversion and reactivation of
the Wedge-shaped Fault System.

6. The vertical change in structural style of the
Warfield structure should affect the entrapment of
hydrocarbons in south-central West Virginia. Shallow
structure, from the surface to the Onondaga Limestone, is a
horizontal anticline with a closure of 300 feet and several
monoclines, and hydrocarbons are presently being produced from
both structural and stratigraphic traps; the northeast-

plunging Warfield anticline at the intermediate level might be
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favorable for the wup-dip migration and entrapment of
hydrocarbons toward the southwest in reservoirs of the
Devonian and Silurian Systems; the small drape anticlines
developed over the uplifted basement blocks southeast of the
Trough-Margin fault and in the southern and northern bend
areas could trap hydrocarbons either at shallow or at deep
levels given suitable reservoirs. Generally, the deep
structures beneath the Warfield anticline northwest of the
Trough-Margin fault lack the closure traps, but fault traps
and sedimentary traps such as the pinch-out and unconformities
might exist according to the abrupt thickness changes across
the Trough-Margin fault. More detailed seismic data and an
analysis of deeply-buried reservoir potential including
thermal maturation studies are required to further assess the

deep potential of the Warfield structure.
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