Magnetic Susceptibility (cgs * 10 ⁻⁶)	ty Gamma (cgs)	Light Elements (H, He, Li, Be, B, C, N, O, F, Ne & Na) (%) Ca (%)	Si (%) Remaining (%)	Remaining XRF Legend Mg P V C Al K Fe P	Cu Pb		Core: LR 27 DH 651
Ξ φ		3 2 2 2 88 88 88 88 3 3 3 49 58 88 88 88	1 1	S Ti Ni	Description	Color	Features
		mproventer	Why Humm		Dark gray to medium gray, very thinly to thinly bedded shale. Alternating even regular banding of dark and light intervals. Light sections are calcareous with small calcite (~1 cm) nodules	N3-N5	Fractures perpendicular to bedding with dark organic fill
		V MMM			Light gray to medium dark gray, irregularly bedded calcareous shale; very thinly to thinly bedded and uneven beds with fossiliferrous interbeds which are irregular and very thinly	N4-N7	Fractures between fossiliferrous beds with calcite
$\begin{array}{c} 10 \\ 12 \\ 14 \\ 16 \\ 20 \\ 22 \\ 24 \\ 26 \\ 30 \\ 32 \\ 34 \\ 36 \\ \end{array}$		man and the second of the second and the second of the sec	Markally Marked a card by MMM of more that saw on here the for the source of the sourc	b	Grayish black to medium light gray regularly edded calcareous shale. Light calcareous and fossliferrous beds are very thinly bedded; alternating darker intervals are thinly bedded. Calcite nodules and veins coincide with fossils and soft sediment deformation	N2-N6	Fractures in calcite regions. FeOH(x) is present

	Origin: Cored as part of geotechnical dam survey. Earliest log information found is February 1977. June 2013 core arrived at WVGES.		Equipment: Mag. Sus., P-Wave, Gamma - Geo-Tek Multi-Sensor Core Logger
Site No 27 Core DH 651	June 2013 core arrived at WVGES. All scans done at the US Department of Energy	00	XRF - Innov-X Delta handheld XRF analyzer
Hardy County, West Virginia Elevation: Unknown	National Energy Technology Laboratory		Computed Tomography Images - Toshiba Aquilion
	in Morgantown, WV July 2013.	Project Oversight: Dan Soeder, Dustin McIntyre & Brian Strazisar	A MARK